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Abstract

Background: In medical practice, clinically unexpected measurements might be quite properly handled by the
remeasurement, removal, or reclassification of patients. If these habits are not prevented during clinical research, how
much of each is needed to sway an entire study?

Methods and Results: Believing there is a difference between groups, a well-intentioned clinician researcher addresses
unexpected values. We tested how much removal, remeasurement, or reclassification of patients would be needed in most
cases to turn an otherwise-neutral study positive. Remeasurement of 19 patients out of 200 per group was required to make
most studies positive. Removal was more powerful: just 9 out of 200 was enough. Reclassification was most powerful, with 5
out of 200 enough. The larger the study, the smaller the proportion of patients needing to be manipulated to make the
study positive: the percentages needed to be remeasured, removed, or reclassified fell from 45%, 20%, and 10% respectively
for a 20 patient-per-group study, to 4%, 2%, and 1% for an 800 patient-per-group study. Dot-plots, but not bar-charts, make
the perhaps-inadvertent manipulations visible. Detection is possible using statistical methods such as the Tadpole test.

Conclusions: Behaviours necessary for clinical practice are destructive to clinical research. Even small amounts of selective
remeasurement, removal, or reclassification can produce false positive results. Size matters: larger studies are
proportionately more vulnerable. If observational studies permit selective unblinded enrolment, malleable classification,
or selective remeasurement, then results are not credible. Clinical research is very vulnerable to ‘‘remeasurement, removal,
and reclassification’’, the 3 evil R’s.
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Introduction

We already know that most published research findings are

false, as elegantly explained by Ioannidis [1]. Clinical medical

research may be worse. Medical training produces standardised

knowledge, values, beliefs, and behaviours. Clinical readers might

like to confirm this by checking how they would answer the

questions below:

Scenario 1
You see a student nurse about to document into the medical

records an oxygen saturation by pulse oximetry of 85%. The

patient is ambulant, looking pink and feeling well. All previous

values have been . = 97%. Do you:

N Immediately confine to bed and initiate 100% oxygen.

N Document 85% and request tests for possible pulmonary

embolism,

N Remeasure the oxygen saturation yourself, and document the

new value instead?

Scenario 2
In the middle of a busy clinical day you are called to an

unfamiliar ward and asked to teach some students about

pneumothorax. On the ward there is a collection of four

anonymised teaching radiographs in the pneumothorax folder.

On three you can see the pneumothorax; the fourth looks normal

to you even on close inspection. Do you:

N Show all four radiographs and claim you can see pneumotho-

races in all four,

N Show all four and admit you cannot see the pneumothorax on

the fourth,

N Show the three with visible pneumothoraces?

Scenario 3
A General Practitioner refers a patient with an asymptomatic

ejection systolic murmur to your cardiology department for

echocardiography. It shows echocardiographically very severe

aortic stenosis and a ventricle beginning to fail. What do you do?
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N Wait for the patient to leave and then send a report to the GP

saying asymptomatic aortic stenosis.

N Call the cardiac surgeons to refer for valve surgery saying

severe aortic stenosis

N Ask the patient in more detail about symptoms, asking them

what they mean by no symptoms, and what activities they can

do, to look for unmentioned symptoms.

Clinical practice runs smoothly and consistently because most

doctors would take the third option in each case. These behaviours

of remeasurement, removal, and reclassification of patients are the

occult oil in the medical machine.

But how much harm could they do in clinical research? Imagine

three researchers in separate laboratories around the world who

believe that patients in two groups differ in their values of a

variable. Each researcher proclaims high clinical and research

standards. Dr A is particularly fastidious, taking care to remeasure

any initial measurements where they are inconsistent with the

clinical picture. Dr B is especially scrupulous about bias in research

and tries to prevent even a few patients who have other

intercurrent diseases from distorting results. Dr C realises that

unaided clinical judgement may be poor at classifying patients and

that test results may be better guidance.

In this study we examine how much of an effect their meticulous,

well-intentioned clinical habits would have on the results of a study

of the difference between those two patient groups.

Methods

Simulating the effect of remeasurement, removal, and
reclassification

We studied the effect of three doctors’ clinical biases by running

large numbers of simulations. The underlying data were normally

distributed values drawn from a single consistent population, i.e.

no difference between groups. We simulated a series of study sizes

from 20 patients per group to 1000 per group. For each group size,

each doctor’s type of inadvertent manipulation, and each degree of

manipulation, we ran 100,000 simulations.

We simulated each manipulation in turn, applying it to the

values considered clinically surprisingly low in one group and

surprisingly high in the other (Figure 1, upper panels).

For remeasurement, those selected patients underwent repeat

measurement with the variable simulated to have an intraclass

correlation coefficient of 0.5. The new measurement was used

instead of the original if it was less extreme. For removal, the

selected patients were simply removed. Dr B would explain that

these individuals almost certainly had some other condition which

made them unrepresentative of their groups. For reclassification,

the patients were transferred between groups. Dr C would explain

that they must have been wrongly classified on superficial clinical

criteria and their correct classification was obvious once the

quantitative data were available.

We should emphasise that we are not assessing a formal,

statistically valid, and neutral process for handling of outlier [1],

but merely the consequences of applying the clinical common

sense that is carried out by every doctor every day.

Determining how much manipulation is needed
We observed how many patients had to be manipulated before

the majority of simulations showed Student’s t-test to be statistically

significant. The pooled variance version and a criterion of p,0.05

was used. Because the manipulation of values from one end of the

distribution will lead to a skewed distribution we also repeated the

simulation using the non-parametric Mann-Whitney U-test.

Tadpole Test, a statistical test to detect these
manipulations

In many medical situations the distributions of patients in each

group is similar. For example, height in men and women has a

similar shape (Figure 2, upper left panel). In other situations there

may be a constrained range with the groups clustered at opposite

ends of the spectrum, commonly showing a long tail from each

group extending towards the other. For example, hair colour in

Norway may be predominantly blond, but with a spectrum

extending all the way to dark; meanwhile in Italy it is

predominantly dark but again with a wide spectrum extending

all the way to blond (Figure 2, upper middle panel).

A third pattern does not easily arise in nature. In this, the tails in

each group point away from each other (Figure 2, upper right

panel), leaving the heads meeting, like kissing tadpoles.

This visual pattern arises in our 3 manipulations (Figure 1)

because they selectively attenuate one tail in one group, and the

opposite tail in the other.

Numerically, this skew is increased in the group with the larger

mean, and decreased in the group with the smaller mean;

implausible for most clinical variables. A straightforward ‘‘Tadpole

test’’ for this phenomenon is to check whether the skews of the two

groups are surprisingly different in magnitude and direction. It can

be done by calculating the D’Agostino z-score for skew in each

group [2]. If that z-score for the higher-mean group is more than

1.64!2 above the z-score for the other group, the Tadpole test is

significant at the p,0.05 level (Equation 1). Our simulations ran

the Tadpole test alongside the Student’s t-test.
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Figure 1. A clinical researcher, who believes that two groups
differ may, at the time of acquiring a clinically surprising value
in an individual patient may elect to remeasure, remove, or
reclassify the patient based on the rationalisations cited
above.
doi:10.1371/journal.pone.0065323.g001

Handling of Outliers on Observational Studies
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Where g() refers to the D’Agostino transformation of the skew, �xx and �yy are the

means of x and y respectively.

Software
Simulations and graphing were performed using the free and

open-source ‘‘R’’ Statistical Environment version 2.15.0 and

graphing package ggplot2 version 0.9.0. We have made our

simulation software free and open-source permitting cost-free

replication of results by any interested reader using Windows, Mac

OS X, or Linux.

Dot plots [3] were generated using R, but we additionally

provide spreadsheets to approximate this using Microsoft Excel

and the free and open-source LibreOffice.

Results

Effects of remeasurement, removal, and reclassification
Dr A’s remeasurement redistributes some patients with initially

surprising values closer to their clinically expected region. The

visual effect is subtle. There is no distinct cut-off since a few

manipulated patients – whose remeasurement gave more-extreme

results – retain their original values. Dr B’s manipulation by

removal is more visually dramatic, amputating the lower end of

one group and the upper end of the other. Dr C’s manipulation of

reclassification is similarly dramatic and, additionally, thickens the

tails of the kissing tadpoles. The histograms in the lower panel

illustrate the increasing differences, and statistical significance of

the difference, between the resulting group means.

How much manipulation is needed?
The number of patients per group needed to be manipulated to

make most study results positive is shown in Figure 3.

Remeasurement in a 20 patient-per-group study required 9

patients per group to be remeasured before most of the 100,000

simulated studies became positive. Removal was more powerful,

requiring only 4 patients per group. Reclassification is even more

powerful requiring on average only 2 patients per group.

For larger studies, more patients need to be manipulated in

order to make the results positive most of the time. At 200 patients

per group, the numbers per group needing manipulation were 19,

9, and 5 respectively.

However, the proportion of patients needing manipulation fell

progressively as study size grew (Figure 4). At 20 patients per

group, manipulations were needed in 45%, 20% and 10% of

patients respectively. By 800 it was just 4%, 2% and 1%.

Most clinicians analyse most data with standard parametric tests

as shown above. Sometimes a dot-plot is shown and a reviewer

may notice the skew of the distribution and request a non-

parametric test. Our study found that the Mann-Whitney U-test

too was railroaded by these three manipulations. At 200 patients

per group, the numbers per group needing remeasurement,

removal, and reclassification were 26 (13%), 12 (6%), and 6 (3%)

respectively (Figure 5 and 6).

The Tadpole test for detection of these manipulations
At group sizes above 100, the Tadpole test is able to detect these

three manipulations.

The degree of manipulation required before the Tadpole test

became positive most of the time is shown in Table 1.

Discussion

Even mild application of clinical common sense during the

acquisition of data can destroy the validity of an unblinded study.

This is because clinicians commonly use the term ‘‘outlier’’ value

asymmetrically to the situation of being surprised by a measure-

ment in the full knowledge of the clinical context of that particular

patient.

Tiny amounts of any one of three normal clinical behaviours –

remeasurement, removal, or reclassification – are enough to falsely

Figure 2. In many medical situations the distributions of
patients in each group is similar. For example, height in men and
women has a similar shape (left panel). In other situations there may be
a constrained range with the groups clustered at opposite ends of the
spectrum, commonly showing a long tail from each group extending
towards the other (middle panel). A third pattern does not easily arise in
nature. In this, the tails in each group point away from each other (right
panel), leaving the heads meeting, like kissing tadpoles.
doi:10.1371/journal.pone.0065323.g002

Figure 3. The number of patients per group needing to be
remeasured, removed, or reclassified to, on average, make an
otherwise neutral study positive by the Student t-test.
doi:10.1371/journal.pone.0065323.g003
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generate apparent differences between identical groups. Only a

very small minority of data needs adjustment, and nothing need be

fabricated. All that is needed is knowledge of which group the

patient is in, and a background of medical training that emphasises

selecting the measurements that fit the clinical picture.

Normal clinical practice
In the clinical vignettes in Box 1 most doctors choose the third

option. Remeasurement, removal, and reclassification are inbuilt

into us because medicine is a craft rather than a science. We

handle difficult situations, with incomplete or unreliable informa-

tion, somehow synthesising confident clinical action with coherent

justification so that patients and other staff do not suffer through

unnecessary doubt.

It may be difficult for clinicians moving repeatedly between

medical practice and research to remember which behaviour is

correct at any given time especially if they have never recognised

the distinction.

Why are larger studies more sensitive to bias?
Minor matters generally have proportionately minor conse-

quences. However, this study shows that particular handling of a

very few clinically unexpected values can have major effects on the

result of a study. The three types of cleaning-up are normal clinical

behaviours. Even a clinical researcher who condemns two of them

might still defend the third, denying that it is harmful.

Although in larger studies the number of patients needing to be

manipulated is larger, the proportion of patients needing to be

manipulated is actually smaller.

This means that it is the larger studies that are the more

threatened by this subtle source manipulation.

Clinicians are drilled to expect larger studies to be more reliable.

This is formalised in guidelines which remind readers incorrectly

[4] that large non-randomised studies have the same status as

randomised controlled trials.

Whilst at first this may seem counter-intuitive, it is in fact to be

expected. Statistical tests assess if the data differs from the null

hypothesis by chance alone, but are unable to determine if this

arises from a true change or from bias. Larger studies are able to

detect smaller effects.

Figure 4. The proportion of patients per group needing to be
remeasured, removed, or reclassified to, on average, make an
otherwise neutral study positive by the Student t-test.
doi:10.1371/journal.pone.0065323.g004

Figure 5. The number of patients per group needing to be
remeasured, removed, or reclassified to, on average, make an
otherwise neutral study positive by the non-parametric Mann-
Whitney U-test.
doi:10.1371/journal.pone.0065323.g005

Figure 6. The proportion of patients per group needing to be
remeasured, removed, or reclassified to, on average, make an
otherwise neutral study positive by the non-parametric Mann-
Whitney U-test.
doi:10.1371/journal.pone.0065323.g006

Handling of Outliers on Observational Studies
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The greater detection capacity of larger studies is agnostic to

whether this effect is a true effect or just bias. Larger study sizes do

not change the balance between genuine differences and bias, as

explanations for positive findings.

The visual effect of these manipulations can be striking but most

studies do not show individual data points, nor make available the

raw numerical values. From the bar graphs (Figures 1 and 2, lower

panels), the reader would have no inkling that the groups differed

only in the handling of a few outliers.

We set a high bar for the manipulation to be considered as

affecting the results – that at least 50% were considered positive at

the nominal p,0.05 threshold. Lower rates would still significantly

distort the scientific literature [5], and would require even less

manipulation. For example, we found that only 2 or 3 patients per

group need be removed in a 100 or 200 patient-per-group study to

make 10% of studies be considered positive.

The Tadpole test
The pattern of tails of two groups pointing away from each

other should be particularly eye-catching because in nature if there

is a tendency of the two tails to be different in direction they should

be pointing towards each other, for the reasons described above.

The Tadpole test is an automatic statistical tool that can be

applied with any raw data to highlight suspicious cases. Since it

returns a z-score, it can easily be aggregated across multiple studies

to perceive manipulations that are individually subtle. For

systematic manipulation the Tadpole test is so sensitive that it

picks up some cases before the manipulation has even made the

study positive.

Interested readers can use the supplemental online spreadsheets

on their own data to test for this very human weakness.

Implications
Dot-plots, or raw data-points, are the gold-standard currency of

quantitative research. They reveal everything that could be

gleaned from a bar chart, and much more, including the

distribution of the data and, to motivated readers, the numerical

values [6]. Authors should show these unless they have something

to hide. Simple, free tools for their display using free and open-

source spreadsheets such as Libreoffice [7], the free and open-

source ‘‘R’’ statistical environment [8], and Microsoft Excel, are

attached in the online supplements (Supplementary File 1 & 2).

Observational clinical research is more vulnerable than widely

supposed to small biases of types routine and necessary for healthy

clinical practice. This may partly explain why observational studies

may overstate differences between groups even when there is no

publication bias [9–11]. Clinical researchers need particular

guidance not to spread clinical practice into research environ-

ments. Reporting of studies should honestly cover possible sources

of bias and steps taken to reduce it [12].

Limitations
In this study we used simulation. This was so that we could be

confident of the nature of the underlying distribution.

Real-life clinical data is not always normally distributed. In

these circumstances authors generally transform data so that the

distribution is approximately normal. Our study addresses data

after such transformation.

Some observational studies may consider more than two groups,

and therefore be analysed by ANOVA, the multi-group equivalent

of the t-test. Because remeasurement, removal, and reclassification

increase between-group variance and decrease within-group

variance, ANOVA is vulnerable too.

This study does not address the actual prevalence of bias in the

observational study literature because this is already known to by

high [10,13,14] and detailed case examples are available [15].

Instead it only shows that minor activation of three behaviours

routinely required in clinical practice is enough to cause false

findings.

Conclusions
Clinical research is conducted by physicians who rely on

remeasurement, removal, and reclassification in daily practice.

Results can very easily be biased enough to generate positive

results falsely. Inadvertent bias affecting a tiny fraction of patients

has overwhelming effects. Large studies generate false positive

findings at an even smaller proportion of manipulation that do

small ones. Authors should be encouraged to show raw data in

dot-plots rather than conceal them in bar-charts. Raw data

permits some manipulations to be detected by eye or through

statistical testing. Clinical researchers should beware the three evil

R’s – remeasurement, removal, and reclassification.

Highlights
What is already known on this topic. Bias is the scourge of

clinical research, and many observational studies and methodo-

logically inadequate randomised trials have succumbed.

In their daily practice clinicians appropriately remeasure,

remove, and reclassify inconsistent or outlier data-points.
What this study adds. Clinical research is highly susceptible

to such practices, and if even a small remnant remains otherwise

neutral studies will appear statistically significant

Strict assurance of blinding is required for results to be credible.

Supporting Information

File S1 An Excel Spreadsheet compatible with both
Microsoft Excel and Libreoffice Calc for generating dot-
plots for up to 6 groups with 300 points per group.
(XLS)

File S2 An Excel spreadsheet compatible with both
Microsoft Excel and Libreoffice Calc for calculating the
‘‘Tadpole Test’’ for two groups of data, and generating a
dot-plot.
(XLS)
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Table 1. Number of patients that can be manipulated before,
on average, the manipulation is detected by the ‘‘tadpole
test’’.

Manipulation Patients per group

100 200

Remeasure 9 (9%) 8 (4%)

Remove 5 (5%) 3 (1.5%)

Reclassify 3 (3%) 6 (3%)

doi:10.1371/journal.pone.0065323.t001
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